Теплопроводность утеплителей таблица Сравнение теплоизоляционных материалов

Теплоемкость и теплопроводность металлов и сплавов

Теплоемкость и теплопроводность металлов и сплавов

  • Теплоемкость и теплопроводность металлов и сплавов Теплоемкость-это способность вещества поглощать тепло при нагревании. Его особенностью является удельная теплоемкость—количество энергии, поглощаемой единицей массы при определенной степени нагрева. Возможность появления трещин в металле зависит от величины теплопроводности. Если теплопроводность низкая, то риск растрескивания высок. Таким образом, легированная сталь обладает в пять раз меньшей теплопроводностью, чем теплопроводность меди и алюминия. Величина теплоемкости влияет на уровень топлива, расходуемого на нагрев заготовки до определенной температуры. В металлических сплавах удельная теплоемкость колеблется от 100 до 2000 Дж / (кг-к).

Большинство металлов имеют теплоемкость 300-400дж/(кг * к). Теплоемкость металлического материала увеличивается с повышением температуры. Полимерные материалы обычно имеют удельную теплоемкость не менее 1000 Дж / (кг*к·. Электрические свойства материала характеризуются наличием носителей заряда электронов или ионов и свободой их движения под действием электрического поля. Высокие ковалентные и ионные энергии связи информируют материал о диэлектрических свойствах этих типов связей. Их слабая проводимость обусловлена влиянием примесей, а под воздействием влаги, при образовании

проводящего раствора, содержащего примеси, проводимость таких материалов возрастает. Людмила Фирмаль

Материалы с разными типами связей имеют разные температурные коэффициенты электрического сопротивления: металлы имеют положительный, а материалы с ковалентным и ионным типом связи имеют отрицательный, при нагревании металла концентрация носителей заряда (электронов)не увеличивается, а сопротивление их движению увеличивается за счет увеличения амплитуды атомов. В материалах с ковалентными или ионными связями при нагревании концентрация носителя заряда очень сильно возрастает, нейтрализуя эффект интерференции вследствие повышенной вибрации атома.

Теплопроводность — это передача тепловой энергии в твердых телах, жидкостях и газах в макроскопически неподвижном состоянии частиц. Передача тепла происходит от более горячих частиц к более холодным и следует закону Фурье. Теплопроводность зависит от типа межатомной связи, температуры, химического состава и структуры материала. Тепло в твердых телах переносится электронами и фононами. Механизм теплопередачи во многом определяется типом связи: в металлах тепло передается электронами. Это самый теплопроводный Алмаз. В полупроводниках с очень низкой концентрацией носителей заряда, теплопроводность, 17Б, в основном, осуществляется фононами.

  • Чем полнее кристалл, тем выше его теплопроводность. Поскольку границы зерен и другие дефекты кристаллической структуры рассеивают фононы и увеличивают их электрическое сопротивление, монокристаллы проявляют лучшую теплопроводность, чем поликристаллы. Кристаллическая решетка создает периодическое энергетическое пространство, в котором перенос тепла электронами или фононами облегчается по сравнению с аморфным состоянием. Чем больше примесей содержит металл, тем мельче кристаллические зерна, тем меньше искажается теплопроводность кристаллической решетки. Чем больше размер частиц, тем выше теплопроводность. Легирование искажает кристаллическую решетку твердого раствора и снижает теплопроводность по сравнению с чистым металлом, который является основой сплава.

Структурный компонент, представляющий собой дисперсную смесь нескольких фаз (эвтектической, эвтектоидной), снижает электропроводность. Структура с равномерным распределением частиц фазы имеет более низкую теплопроводность, чем основа сплава. Основным типом таких структур являются пористые материалы. По сравнению с твердым телом, газ является теплоизолятором. Графит обладает высокой теплопроводностью. Если тепло передается параллельно углеродно-атомному слою базовой плоскости, то теплопроводность графита превышает теплопроводность меди более чем в 2 раза. Разветвленные графитовые пластины в сером чугуне имеют монокристаллическую структуру и, соответственно, высокую теплопроводность.

Высокопрочный чугун со сфероидальным графитом при одинаковой объемной доле графита имеет коэффициент теплопроводности 25… 40 Вт / м * к-это почти половина серого чугуна. Людмила Фирмаль

При нагреве теплопроводность сталей разных классов сходится. Стекло обладает низкой теплопроводностью. Полимерный материал не проводит тепло хорошо, и теплопроводность большинства термопластов не превышает 1,5 Вт/(МОК). Проводимость может изменяться как проводимость, если электронная проводимость металла равна l e. впоследствии изменения, которые происходят в химическом и фазовом составе и структуре сплава, являются、 Когда состав сплава удаляется из чистого компонента, теплопроводность уменьшается. Исключение составляют медно-никелевые сплавы, в которых, например, происходит обратное явление.

Обо мне

Как заказать?

Отзывы

Супер!
Присылайте в whatsapp:

+79219603113

Если у вас установлен whatsapp, нажмите:

Написать сообщение

Если whatsappа нет, установите и добавьте меня, вот инструкция.

f9219603113@gmail.com

Режим работы с 07:00 утра до 24:00 ночи (часовой пояс Москва)

Образовательный сервис позволяющий получить дополнительные знания


Если не указано иное, контент на этом сайте лицензирован под международной лицензией Creative commons attribution 4.0

© 2000 – 2019 ИП «Фирмаль Людмила Анатольевна»

Читайте также:  Снятие обшивки двери на Гранте

Все авторские права на размещённые материалы сохраняются за правообладателями. Любое коммерческое и другое использование кроме предварительного ознакомления запрещено. Публикация предоставленных материалов не преследует за собой коммерческой выгоды. Публикация являются рекламой бумажных изданий этих документов. Я оказываю услуги по сбору, компоновке и обрабатыванию информации по теме заданной мне Клиентом. Результат работы не будет готовым научным трудом, но может быть источником для его самостоятельного изучения и написания.

Коэффициент теплопроводности. Выбираем «свою» теплоизоляцию

Коэффициент теплопроводности. Выбираем «свою» теплоизоляцию

Что такое коэффициент теплопроводности и для чего он нужен? Что значит «при 10 °С» или «при 100 °С»? Как правильно сравнить теплопроводность материалов. Первая статья Дмитрия Абрамова из серии «Своя теплоизоляция».

Что такое коэффициент теплопроводности

Точное определение коэффициента теплопроводности дано в своде правил СП 61.13330.2012 «Тепловая изоляция оборудования и трубопроводов».

Коэффициент теплопроводности — количество теплоты, передаваемое за единицу времени через единицу площади изотермической поверхности при температурном градиенте, равном единице.
Из СП 61.13330.2012

Здесь использованы следующие понятия:

Коэффициент — относительная величина, определяющая свойство какого-нибудь процесса или устройства.

Теплопроводность — свойство передавать теплоту от нагретых участков к более холодным.

Изотермическая поверхность — поверхность, температура которой одинакова во всех точках.

Температурный градиент — перепад температур.

По сути, это расчетный коэффициент, который показывает, сколько тепла проводит материал. Коэффициент теплопроводности обозначается символом λ (лямбда).

Для чего нужен коэффициент теплопроводности

Когда вы видите, что коэффициент тепловодности одного материала при 10 °С равен 0,034 Вт/мК, а другого 0,036 Вт/мК, при тех же условиях. Что это означает?

Благодаря коэффициенту теплопроводности вы можете сравнить, какой материал передает больше теплоты, а какой меньше. Чем меньше теплопроводность материала, тем лучшими теплоизоляционными свойствами он обладает.

Для примера сравните коэффициент теплопроводности материалов ALMALEN при 10 °С с другими вспененными полиэтиленами. Он имеет наименьшую теплопроводность в своем классе: от 0,032 Вт/мК до 0,034 Вт/мК.

А если пойти дальше, то коэффициент теплопроводности даст понимание, как изменяется количество передаваемого тепла через один и тот же материал в зависимости от температуры на поверхности изолируемого объекта. Количество передаваемого материалом тепла за промежуток времени называется тепловым потоком.

Определение теплового потока дано в ГОСТ 7076-99 «Материалы и изделия строительные. Метод определения теплопроводности и термического сопротивления при стационарном тепловом режиме».

Тепловой поток — количество теплоты, проходящее через образец в единицу времени.
Из ГОСТ 7076-99

Что значит λ10, λ20, λ100 и так далее

Подробно разобраться в вопросе помогут нормативные документы. Возьмем, например, ГОСТ 32025-2012 (EN ISO 8497:1996) «Тепловая изоляция. Метод определения характеристик теплопереноса в цилиндрах заводского изготовления при стационарном тепловом режиме». Согласно этому методу:

λ10 — это коэффициент теплопроводности, полученный в результате испытаний при среднеарифметическом значении температуры теплоизоляции 10 °С. Среднеарифметическое значение температуры теплоизоляции — сумма температур на изолируемой поверхности и внешней поверхности теплоизоляции, разделенная пополам.

λ100 означает, что испытания проведены при среднеарифметическом значении температуры теплоизоляции 100 °С.

Как правильно сравнивать коэффициент теплопроводности разных материалов

Существуют различные методы определения коэффициента теплопроводности. При сравнении материалов необходимо всегда обращать внимание на сопоставимость и применимость таких методов. То есть необходимо сравнивать коэффициенты теплопроводности, взятые при одной и той же температуре и определенные по одному и тому же стандарту.

Например, по ГОСТ 7076-99 «Материалы и изделия строительные. Метод определения теплопроводности и термического сопротивления при стационарном тепловом режиме» обычно определяют коэффициент теплопроводности при 25 °С. В то же время большинство европейских стандартов, например EN 12667:2001, определяют коэффициент теплопроводности при 10 °С.

Коэффициент теплопроводности одного и того же материала, измеренный при меньшей температуре, будет всегда иметь меньшее значение и выглядеть якобы предпочтительнее.

Когда кто-то сравнивает различные материалы по непонятно каким коэффициентам теплопроводности — бегите от такого «специалиста». В лучшем случае вы потеряете время.

Сравнение теплопроводности различных утеплителей

Выбор теплоизоляционных материалов на современном рынке огромен. Производители выпускают различные по структуре, плотности, звукоизоляционным характеристикам и влагостойкости модели. Потребителям необходимо знать теплопроводность утеплителей и критерии подбора. Подробное сравнение всех видов поможет найти идеальный для постройки материал.

Понятие теплопроводности

Под теплопроводностью понимается передача энергии тепла от объекта к объекту до момента теплового равновесия, т.е. выравнивания температуры. В отношении частного дома важна скорость процесса – чем дольше происходит выравнивание, тем меньше остывает конструкция.

В числовом виде явление выражается через коэффициент теплопроводности. Показатель наглядно выражает прохождение количества тепла за определенное время через единицу поверхности. Чем больше величина, тем быстрее утекает тепловая энергия.

Теплопередача различных материалов указывается в характеристиках изготовителя на упаковке.

Факторы влияния на теплопроводность

Теплопроводность зависит от плотности и толщины теплоизолята, поэтому важно учитывать ее при покупке. Плотность – это масса одного кубометра материалов, которые по этому критерию классифицируются как очень легкие, легкие, средние и жесткие. Легкие пористые изделия применяются для покрытия внутренних стен, несущих перегородок, плотные – для наружных работ.

Читайте также:  Разблокировать магнитолу Sony,FORD

Модификации с меньшей плотностью легче по весу, но имеют лучшие параметры теплопроводности. Сравнение утеплителей по плотности представлено в таблице.

Материал Показатель плотности, кг/м3
Минвата 50-200
Экструдированный пенополистирол 33-150
Пенополиуретан 30-80
Мастика из полиуретана 1400
Рубероид 600
Полиэтилен 1500

Чем выше плотность, тем меньше уровень пароизоляции.

Толщина материала также влияет на степень теплопередачи. Если она избыточная, нарушается естественная вентиляция помещений. Маленькая толщина становится причиной мостов холода и образования конденсата на поверхности. В результате стена покроется плесенью и грибком. Сравнить параметры толщины материалов можно в таблице.

Материал Толщина, мм
Пеноплекс 20
Минвата 38
Ячеистый бетон 270
Кладка из кирпича 370

При подборе толщины стоит учитывать климат местности, материал постройки.

Характеристики разных материалов

Перед рассмотрением таблицы теплопроводности утеплителей имеет смысл ознакомиться с кратким обзором. Информация поможет застройщикам разобраться в специфике материала и его назначении.

Пенопласт

Плитный материал, изготовленный посредством вспенивания полистирола. Отличается удобством раскроя и монтажа, низкой теплопроводностью – в сравнении с другими изоляторами пенопласт легче. Преимущества изделия – недорогая стоимость, стойкость к влажной среде. Минусы пенопласта – хрупкость, быстрая возгораемость. По этой причине плиты толщиной 20-150 мм используются для теплоизоляции легких наружных конструкций – фасадов под штукатурные работы, стены цоколей и подвалов.

При горении пенопласта выделяются токсичные вещества.

Экструдированный пенополистирол

Вспененный полистирол с экструзией отличается стойкость к воздействию влажной среды. Материал легко раскраивается, не горит, прост в укладке и транспортировке. У плит помимо низкой теплопроводности – высокая плотность и прочность на сжатие. Среди российских застройщиков популярен экструдированный пенополистирол брендов Техноплекс и Пеноплекс. Его применяют для теплоизоляции отмостки и ленточного фундамента.

Минеральная вата

Коэффициент теплопроводности минеральной ваты – 0,048 Вт/(м*С), что больше пенопласта. Материал изготавливается на основе горных пород, шлака или доломита в форме плит и рулонов, у которых разный индекс жесткости. Для утепления вертикальных поверхностей допускается применять жесткие и полужесткие изделия. Горизонтальные конструкции лучше утеплять при помощи легких минплит.

Несмотря на оптимальный индекс теплопроводности, у минеральной ваты маленькая устойчивость к влажной среде. Плиты не подойдут для утепления подвальных помещений, парилок, предбанников.

Применение минваты с низкой теплопроводностью допускается только при наличии пароизоляционного и гидроизоляционного слоев.

Базальтовая вата

Основой для изоляции является базальтовый вид горной породы, который раздувается при нагреве до состояния волокон. При изготовлении также добавляют нетоксичные связующие компоненты. На российском рынке продукция бренда Роквул, на примере которой можно рассмотреть особенности утеплителя:

  • не подвергается возгоранию;
  • отличается хорошим показателем тепло- и звукоизоляции;
  • отсутствие слеживания и уплотнения в процессе эксплуатации;
  • экологически чистый строительный материал.

Параметры теплопроводности позволяют использовать каменную вату для наружных и внутренних работ.

Стекловата

Стекловатный утеплитель изготавливается из буры, известняка, соды, просеянного доломита и песка. Для экономии на производстве применяют стеклобой, что не нарушается свойства материала. К преимуществам стекловаты относятся высокие показатели тепло- и звукоизоляции, экологическая чистота и низкая стоимость. Минусов больше:

  • Гигроскопичность – впитывает воду, вследствие чего теряет утепляющие характеристики. Для предотвращения гниения и разрушения конструкции укладывают между пароизоляционными слоями.
  • Неудобство монтажа – волокна с повышенной хрупкостью распадаются, могут вызывать жжение и зуд кожи.
  • Непродолжительная эксплуатация – через 10 лет происходит усадка.
  • Невозможность применения для утепления влажных комнат.

При работе со стекловатой нужно защищать кожу рук перчатками, лицо – очками или маской.

Вспененный полиэтилен

Рулонный полиэтилен с пористой структурой имеет дополнительный отражающий слой из фольги. Преимущества изолона и пенофола:

  • маленькая толщина – от 2 до 10 мм, что в 10 раз меньше обычных изоляторов;
  • возможность сохранения до 97 % полезного тепла;
  • стойкость к воздействию влаги;
  • минимальная теплопроводность за счет пор;
  • экологическая чистота;
  • отражающий эффект, за счет которого аккумулируется тепловая энергия.

Рулонная теплоизоляция подходит для укладки во влажных комнатах, на балконах и лоджиях.

Напыляемая теплоизоляция

Если обратиться к таблице, то видно, что напыляемые виды заменяют 10 см минваты. Они выпускаются в баллонах, напоминают монтажную пену и наносятся при помощи специального инструмента. Напыляемый утеплитель бывает разной жесткости, в емкости также присутствуют пенообразователи – полиизоционатом и полиолом. По типу основного компонента изоляция бывает:

  • ППУ. Пенополиуретан с открытой ячеистой структурой прочен, теплоэффективен. При наличии закрытых пустот в составе – может пропускать пар.
  • Пеноизольная. Жидкий пенопласт на карбамидоформальдегидной основе отличается паропроницаемостью, стойкость к возгоранию. Наносится посредством заливки. Оптимальная температура затвердевания – от +15 градусов.
  • Жидкая керамика. Керамические компоненты расплавляются до жидкого состояния, потом смешиваются полимерными веществами и пигментами. Получаются вакуумированные полости. Наружное утепление обеспечивает защиту здания на 10 лет, внутреннее – на 25 лет.
  • Эковата. Целлюлоза измельчается до состояния пыли, приобретает клейкость при попадании воды. Материал подходит для работы на влажных стеновых поверхностях, но не используется рядом с каминными трубами, дымоходами и печами.

Напыляемые утеплители отличаются хорошей сцепкой с поверхностями, для которых применялись дерево, кирпич или газобетон.

Таблица коэффициентов теплопроводности разных материалов

На основе таблицы с коэффициентами теплопроводности строительных материалов и популярных утеплителей можно сделать сравнительный анализ. Он обеспечит подбор оптимального варианта теплоизоляции для строения.

Читайте также:  Разболтовка колесных дисков - таблица совместимости, как узнать вылет, параметры, допустимые отклоне
Материал Теплопроводность, Вт/м*К Толщина, мм Плотность, кг/м³ Температура укладки, °C Паропроницаемость, мг/м²*ч*Па
Пенополиуретан 0,025 30 40-60 От -100 до +150 0,04-0,05
Экструдированный пенополистирол 0,03 36 40-50 От -50 до +75 0,015
Пенопласт 0,05 60 40-125 От -50 до +75 0,23
Минвата (плиты) 0,047 56 35-150 От -60 до +180 0,53
Стекловолокно (плиты) 0,056 67 15-100 От +60 до +480 0,053
Базальтовая вата (плиты) 0,037 80 30-190 От -190 до +700 0,3
Железобетон 2,04 2500 0,03
Пустотелый кирпич 0,058 50 1400 0,16
Деревянные брусья с поперечным срезом 0,18 15 40-50 0,06

Для параметров толщины применялся усредненный показатель.

Иные критерии подбора утеплителей

Теплоизоляционное покрытие обеспечивает снижение теплопотерь на 30-40 %, повышает прочность несущих конструкций из кирпича и металла, сокращает уровень шума и не забирает полезную площадь постройки. При выборе утеплителя помимо теплопроводности нужно учитывать другие критерии.

Объемный вес

Данная характеристика связана с теплопроводностью и зависит от типа материала:

  • Минераловатные продукты отличаются плотностью 30-200 кг/м3, поэтому подходят для всех поверхностей строения.
  • Вспененный полиэтилен имеет толщину 8-10 мм. Плотность без фольгирования равняется 25 кг/м3 с отражающей основой – около 55 кг/м3.
  • Пенопласт отличается удельным весом от 80 до 160 кг/м3, а экструдированный пенополистирол – от 28 до 35 кг/м3. Последний материал является одним из самых легких.
  • Полужидкий напыляемый пеноизол при плотности 10 кг/м3 требует предварительного оштукатуривания поверхности.
  • Пеностекло имеет плотность, связанную со структурой. Вспененный вариант характеризуется объемным весом от 200 до 400 кг/м3. Теплоизолят из ячеистого стекла – от 100 до 200 м3, что делает возможным применение на фасадных поверхностях.

Чем меньше объемный вес, тем меньше затрачивается материала.

Способность держать форму

Производители не указывают формостабильность на упаковке, но можно ориентироваться на коэффициенты Пуассона и трения, сопротивления изгибам и сжатиям. По стабильности формы судят о сминаемости или изменении параметров теплоизоляционного слоя. В случае деформации существуют риски утечки тепла на 40 % через щели и мосты холода.

Формостабильность стройматериалов зависит от типа утеплителя:

  • Вата (минеральная, базальтовая, эко) при укладке между стропилами расправляется. За счет жестких волокон исключается деформация.
  • Пенные виды держат форму на уровне жесткой каменной ваты.

Способность изделия держать форму также определяется по характеристикам упругости.

Паропроницаемость

Определяет «дышащие» свойства материала – способность к пропусканию воздуха и пара. Показатель важен для контроля микроклимата в помещении – в законсервированных комнатах образуется больше плесени и грибка. В условиях постоянной влажности конструкция может разрушаться.

По степени паропроницаемости выделяют два типа утеплителей:

  • Пены – изделия, для производства которых применяется технология вспенивания. Продукция вообще не пропускает конденсат.
  • Ваты – теплоизоляция на основе минерального или органического волокна. Материалы могут пропускать конденсат.

При монтаже паропроницаемых ват дополнительно укладывают пленочную пароизоляцию.

Горючесть

Показатель, на который ориентируются при строительстве наземных частей жилых зданий. Классификация токсичности и горючести указана в ст. 13 ФЗ № 123. В техническом регламенте выделены группы:

  • НГ – негорючие: каменная и базальтовая вата.
  • Г – возгораемые. Материалы категории Г1 (пенополиуретан) отличаются слабой возгораемостью, категории Г4 (пенополистирол, в т.ч. экструдированный) – сильногорючие.
  • В – воспламеняемые: плиты из ДСП, рубероид.
  • Д – дымообразующие (ПВХ).
  • Т – токсичные (минимальный уровень – у бумаги).

Оптимальный вариант для частного строительства – самозатухающие материалы.

Звукоизоляция

Характеристика, связанная с паропроницаемостью и плотностью. Ваты исключают проникновение посторонних шумов в помещении, через пены проникает больше шума.

У плотных материалов лучше шумоизоляционные свойства, но укладка осложняется толщиной и весом. Оптимальным вариантом для самостоятельных теплоизоляционных работ будет каменная вата с высоким звукопоглощением. Аналогичные показатели – у легкой стекловаты или базальтового утеплителя со скрученными длинными тонкими волокнами.

Нормальный показатель звукоизоляции – плотность от 50 кг/м3.

Практическое применение коэффициента теплопроводности

После теоретического сравнения материалов нужно учитывать их разделение на группы теплоизоляционных и конструкционных. У конструкционного сырья – самые высокие индексы теплопередачи, поэтому оно подходит для возведения перекрытий, ограждений или стен.

Без использования сырья со свойствами утеплителей понадобится укладывать толстый слой теплоизоляции. Обратившись к таблице теплопроводности, можно определить, что низкий теплообмен конструкций из железобетона будет только при их толщине 6 м. Готовый дом будет громоздким, может просесть под почву, а затраты на строительство не окупятся и через 50 лет.

Достаточная толщина теплоизоляционного слоя – 50 см.

Применение теплоизоляционных материалов обеспечивает сокращение затрат на строительные мероприятия и снижает переплаты за энергию зимой. При покупке утеплителя нужно учитывать параметры теплопроводности, основные характеристики, стоимость и удобство самостоятельного монтажа.

Ссылка на основную публикацию
Тахограф VDO DTCO 3283 — характеристики, особенности, инструкции
Тахограф vdo 3283 инструкция Установка тахографов на автотранспорте стала уже привычным событием. Для многих транспортных предприятий и водителей цифровые самописцы...
Съемник шаровой опоры нива шевроле; АвтоТоп
Замена верхней шаровой опоры НИВА своими руками без съёмника, фото и видео инструкция Покажем вам подробную фото и видео инструкцию...
Сыр Маасдам рецепт в домашних условиях, калорийность, полезные свойства
Маасдам (Maasdam) Маасдам — полутвердый сорт сыра. В его приготовлении используют коровье молоко только высшего качества, проверенное на отсутствие антибиотиков....
Тачки за копейки; 86 Ханты-Мансийск ВКонтакте
Трубка латунь 8 мм Латунная труба Л63 Латунная труба Л68 Латунная труба – один из наиболее популярных и востребованных видов...
Adblock detector